Note
Go to the end to download the full example code or to run this example in your browser via Binder
Using simple NumPy operations for manipulating images#
This script illustrates how to use basic NumPy operations, such as slicing, masking and fancy indexing, in order to modify the pixel values of an image.

import numpy as np
from skimage import data
import matplotlib.pyplot as plt
camera = data.camera()
camera[:10] = 0
mask = camera < 87
camera[mask] = 255
inds_x = np.arange(len(camera))
inds_y = (4 * inds_x) % len(camera)
camera[inds_x, inds_y] = 0
l_x, l_y = camera.shape[0], camera.shape[1]
X, Y = np.ogrid[:l_x, :l_y]
outer_disk_mask = (X - l_x / 2)**2 + (Y - l_y / 2)**2 > (l_x / 2)**2
camera[outer_disk_mask] = 0
plt.figure(figsize=(4, 4))
plt.imshow(camera, cmap='gray')
plt.axis('off')
plt.show()
Total running time of the script: ( 0 minutes 0.139 seconds)