Attribute operators#

Attribute operators (or connected operators) [1] is a family of contour preserving filtering operations in mathematical morphology. They can be implemented by max-trees [2], a compact hierarchical representation of the image.

Here, we show how to use diameter closing [3] [4], which is compared to morphological closing. Comparing the two results, we observe that the difference between image and morphological closing also extracts the long line. A thin but long line cannot contain the structuring element. The diameter closing stops the filling as soon as a maximal extension is reached. The line is therefore not filled and therefore not extracted by the difference.

import matplotlib.pyplot as plt
from skimage.morphology import diameter_closing
from skimage import data
from skimage.morphology import closing
from skimage.morphology import square

datasets = {
    'retina': {'image': data.microaneurysms(),
               'figsize': (15, 9),
               'diameter': 10,
               'vis_factor': 3,
               'title': 'Detection of microaneurysm'},
    'page': {'image': data.page(),
             'figsize': (15, 7),
             'diameter': 23,
             'vis_factor': 1,
             'title': 'Text detection'}
}

for dataset in datasets.values():
    # image with printed letters
    image = dataset['image']
    figsize = dataset['figsize']
    diameter = dataset['diameter']

    fig, ax = plt.subplots(2, 3, figsize=figsize)
    # Original image
    ax[0, 0].imshow(image, cmap='gray', aspect='equal',
                    vmin=0, vmax=255)
    ax[0, 0].set_title('Original', fontsize=16)
    ax[0, 0].axis('off')

    ax[1, 0].imshow(image, cmap='gray', aspect='equal',
                    vmin=0, vmax=255)
    ax[1, 0].set_title('Original', fontsize=16)
    ax[1, 0].axis('off')

    # Diameter closing : we remove all dark structures with a maximal
    # extension of less than <diameter> (12 or 23). I.e. in closed_attr, all
    # local minima have at least a maximal extension of <diameter>.
    closed_attr = diameter_closing(image, diameter, connectivity=2)

    # We then calculate the difference to the original image.
    tophat_attr = closed_attr - image

    ax[0, 1].imshow(closed_attr, cmap='gray', aspect='equal',
                    vmin=0, vmax=255)
    ax[0, 1].set_title('Diameter Closing', fontsize=16)
    ax[0, 1].axis('off')

    ax[0, 2].imshow(dataset['vis_factor'] * tophat_attr, cmap='gray',
                    aspect='equal', vmin=0, vmax=255)
    ax[0, 2].set_title('Tophat (Difference)', fontsize=16)
    ax[0, 2].axis('off')

    # A morphological closing removes all dark structures that cannot
    # contain a structuring element of a certain size.
    closed = closing(image, square(diameter))

    # Again we calculate the difference to the original image.
    tophat = closed - image

    ax[1, 1].imshow(closed, cmap='gray', aspect='equal',
                    vmin=0, vmax=255)
    ax[1, 1].set_title('Morphological Closing', fontsize=16)
    ax[1, 1].axis('off')

    ax[1, 2].imshow(dataset['vis_factor'] * tophat, cmap='gray',
                    aspect='equal', vmin=0, vmax=255)
    ax[1, 2].set_title('Tophat (Difference)', fontsize=16)
    ax[1, 2].axis('off')
    fig.suptitle(dataset['title'], fontsize=18)
    fig.tight_layout(rect=(0, 0, 1, 0.88))

plt.show()
  • Detection of microaneurysm, Original, Diameter Closing, Tophat (Difference), Original, Morphological Closing, Tophat (Difference)
  • Text detection, Original, Diameter Closing, Tophat (Difference), Original, Morphological Closing, Tophat (Difference)

References#

Total running time of the script: ( 0 minutes 2.596 seconds)

Gallery generated by Sphinx-Gallery