Note
Go to the end to download the full example code or to run this example in your browser via Binder
Normalized Cut#
This example constructs a Region Adjacency Graph (RAG) and recursively performs a Normalized Cut on it [1].
References#
from skimage import data, segmentation, color
from skimage import graph
from matplotlib import pyplot as plt
img = data.coffee()
labels1 = segmentation.slic(img, compactness=30, n_segments=400,
start_label=1)
out1 = color.label2rgb(labels1, img, kind='avg', bg_label=0)
g = graph.rag_mean_color(img, labels1, mode='similarity')
labels2 = graph.cut_normalized(labels1, g)
out2 = color.label2rgb(labels2, img, kind='avg', bg_label=0)
fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True, figsize=(6, 8))
ax[0].imshow(out1)
ax[1].imshow(out2)
for a in ax:
a.axis('off')
plt.tight_layout()
Total running time of the script: (0 minutes 2.970 seconds)