Module: color

skimage.color.combine_stains(stains, ...[, ...])

Stain to RGB color space conversion.

skimage.color.convert_colorspace(arr, ...[, ...])

Convert an image array to a new color space.

skimage.color.deltaE_cie76(lab1, lab2[, ...])

Euclidean distance between two points in Lab color space

skimage.color.deltaE_ciede2000(lab1, lab2[, ...])

Color difference as given by the CIEDE 2000 standard.

skimage.color.deltaE_ciede94(lab1, lab2[, ...])

Color difference according to CIEDE 94 standard

skimage.color.deltaE_cmc(lab1, lab2[, kL, ...])

Color difference from the CMC l:c standard.

skimage.color.gray2rgb(image, *[, channel_axis])

Create an RGB representation of a gray-level image.

skimage.color.gray2rgba(image[, alpha, ...])

Create a RGBA representation of a gray-level image.

skimage.color.hed2rgb(hed, *[, channel_axis])

Haematoxylin-Eosin-DAB (HED) to RGB color space conversion.

skimage.color.hsv2rgb(hsv, *[, channel_axis])

HSV to RGB color space conversion.

skimage.color.lab2lch(lab, *[, channel_axis])

Convert image in CIE-LAB to CIE-LCh color space.

skimage.color.lab2rgb(lab[, illuminant, ...])

Convert image in CIE-LAB to sRGB color space.

skimage.color.lab2xyz(lab[, illuminant, ...])

Convert image in CIE-LAB to XYZ color space.

skimage.color.label2rgb(label[, image, ...])

Return an RGB image where color-coded labels are painted over the image.

skimage.color.lch2lab(lch, *[, channel_axis])

Convert image in CIE-LCh to CIE-LAB color space.

skimage.color.rgb2gray(rgb, *[, channel_axis])

Compute luminance of an RGB image.

skimage.color.rgb2hed(rgb, *[, channel_axis])

RGB to Haematoxylin-Eosin-DAB (HED) color space conversion.

skimage.color.rgb2hsv(rgb, *[, channel_axis])

RGB to HSV color space conversion.

skimage.color.rgb2lab(rgb[, illuminant, ...])

Conversion from the sRGB color space (IEC 61966-2-1:1999) to the CIE Lab colorspace under the given illuminant and observer.

skimage.color.rgb2rgbcie(rgb, *[, channel_axis])

RGB to RGB CIE color space conversion.

skimage.color.rgb2xyz(rgb, *[, channel_axis])

RGB to XYZ color space conversion.

skimage.color.rgb2ycbcr(rgb, *[, channel_axis])

RGB to YCbCr color space conversion.

skimage.color.rgb2ydbdr(rgb, *[, channel_axis])

RGB to YDbDr color space conversion.

skimage.color.rgb2yiq(rgb, *[, channel_axis])

RGB to YIQ color space conversion.

skimage.color.rgb2ypbpr(rgb, *[, channel_axis])

RGB to YPbPr color space conversion.

skimage.color.rgb2yuv(rgb, *[, channel_axis])

RGB to YUV color space conversion.

skimage.color.rgba2rgb(rgba[, background, ...])

RGBA to RGB conversion using alpha blending [1].

skimage.color.rgbcie2rgb(rgbcie, *[, ...])

RGB CIE to RGB color space conversion.

skimage.color.separate_stains(rgb, ...[, ...])

RGB to stain color space conversion.

skimage.color.xyz2lab(xyz[, illuminant, ...])

XYZ to CIE-LAB color space conversion.

skimage.color.xyz2rgb(xyz, *[, channel_axis])

XYZ to RGB color space conversion.

skimage.color.ycbcr2rgb(ycbcr, *[, channel_axis])

YCbCr to RGB color space conversion.

skimage.color.ydbdr2rgb(ydbdr, *[, channel_axis])

YDbDr to RGB color space conversion.

skimage.color.yiq2rgb(yiq, *[, channel_axis])

YIQ to RGB color space conversion.

skimage.color.ypbpr2rgb(ypbpr, *[, channel_axis])

YPbPr to RGB color space conversion.

skimage.color.yuv2rgb(yuv, *[, channel_axis])

YUV to RGB color space conversion.

combine_stains

skimage.color.combine_stains(stains, conv_matrix, *, channel_axis=-1)[source]

Stain to RGB color space conversion.

Parameters:
stains(…, 3, …) array_like

The image in stain color space. By default, the final dimension denotes channels.

conv_matrix: ndarray

The stain separation matrix as described by G. Landini [1].

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If stains is not at least 2-D with shape (…, 3, …).

Notes

Stain combination matrices available in the color module and their respective colorspace:

  • rgb_from_hed: Hematoxylin + Eosin + DAB

  • rgb_from_hdx: Hematoxylin + DAB

  • rgb_from_fgx: Feulgen + Light Green

  • rgb_from_bex: Giemsa stain : Methyl Blue + Eosin

  • rgb_from_rbd: FastRed + FastBlue + DAB

  • rgb_from_gdx: Methyl Green + DAB

  • rgb_from_hax: Hematoxylin + AEC

  • rgb_from_bro: Blue matrix Anilline Blue + Red matrix Azocarmine + Orange matrix Orange-G

  • rgb_from_bpx: Methyl Blue + Ponceau Fuchsin

  • rgb_from_ahx: Alcian Blue + Hematoxylin

  • rgb_from_hpx: Hematoxylin + PAS

References

[2]

A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution,” Anal. Quant. Cytol. Histol., vol. 23, no. 4, pp. 291–299, Aug. 2001.

Examples

>>> from skimage import data
>>> from skimage.color import (separate_stains, combine_stains,
...                            hdx_from_rgb, rgb_from_hdx)
>>> ihc = data.immunohistochemistry()
>>> ihc_hdx = separate_stains(ihc, hdx_from_rgb)
>>> ihc_rgb = combine_stains(ihc_hdx, rgb_from_hdx)

convert_colorspace

skimage.color.convert_colorspace(arr, fromspace, tospace, *, channel_axis=-1)[source]

Convert an image array to a new color space.

Valid color spaces are:

‘RGB’, ‘HSV’, ‘RGB CIE’, ‘XYZ’, ‘YUV’, ‘YIQ’, ‘YPbPr’, ‘YCbCr’, ‘YDbDr’

Parameters:
arr(…, 3, …) array_like

The image to convert. By default, the final dimension denotes channels.

fromspacestr

The color space to convert from. Can be specified in lower case.

tospacestr

The color space to convert to. Can be specified in lower case.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The converted image. Same dimensions as input.

Raises:
ValueError

If fromspace is not a valid color space

ValueError

If tospace is not a valid color space

Notes

Conversion is performed through the “central” RGB color space, i.e. conversion from XYZ to HSV is implemented as XYZ -> RGB -> HSV instead of directly.

Examples

>>> from skimage import data
>>> img = data.astronaut()
>>> img_hsv = convert_colorspace(img, 'RGB', 'HSV')

deltaE_cie76

skimage.color.deltaE_cie76(lab1, lab2, channel_axis=-1)[source]

Euclidean distance between two points in Lab color space

Parameters:
lab1array_like

reference color (Lab colorspace)

lab2array_like

comparison color (Lab colorspace)

channel_axisint, optional

This parameter indicates which axis of the arrays corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
dEarray_like

distance between colors lab1 and lab2

References

[2]

A. R. Robertson, “The CIE 1976 color-difference formulae,” Color Res. Appl. 2, 7-11 (1977).

deltaE_ciede2000

skimage.color.deltaE_ciede2000(lab1, lab2, kL=1, kC=1, kH=1, *, channel_axis=-1)[source]

Color difference as given by the CIEDE 2000 standard.

CIEDE 2000 is a major revision of CIDE94. The perceptual calibration is largely based on experience with automotive paint on smooth surfaces.

Parameters:
lab1array_like

reference color (Lab colorspace)

lab2array_like

comparison color (Lab colorspace)

kLfloat (range), optional

lightness scale factor, 1 for “acceptably close”; 2 for “imperceptible” see deltaE_cmc

kCfloat (range), optional

chroma scale factor, usually 1

kHfloat (range), optional

hue scale factor, usually 1

channel_axisint, optional

This parameter indicates which axis of the arrays corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
deltaEarray_like

The distance between lab1 and lab2

Notes

CIEDE 2000 assumes parametric weighting factors for the lightness, chroma, and hue (kL, kC, kH respectively). These default to 1.

References

[3]

M. Melgosa, J. Quesada, and E. Hita, “Uniformity of some recent color metrics tested with an accurate color-difference tolerance dataset,” Appl. Opt. 33, 8069-8077 (1994).

deltaE_ciede94

skimage.color.deltaE_ciede94(lab1, lab2, kH=1, kC=1, kL=1, k1=0.045, k2=0.015, *, channel_axis=-1)[source]

Color difference according to CIEDE 94 standard

Accommodates perceptual non-uniformities through the use of application specific scale factors (kH, kC, kL, k1, and k2).

Parameters:
lab1array_like

reference color (Lab colorspace)

lab2array_like

comparison color (Lab colorspace)

kHfloat, optional

Hue scale

kCfloat, optional

Chroma scale

kLfloat, optional

Lightness scale

k1float, optional

first scale parameter

k2float, optional

second scale parameter

channel_axisint, optional

This parameter indicates which axis of the arrays corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
dEarray_like

color difference between lab1 and lab2

Notes

deltaE_ciede94 is not symmetric with respect to lab1 and lab2. CIEDE94 defines the scales for the lightness, hue, and chroma in terms of the first color. Consequently, the first color should be regarded as the “reference” color.

kL, k1, k2 depend on the application and default to the values suggested for graphic arts

Parameter

Graphic Arts

Textiles

kL

1.000

2.000

k1

0.045

0.048

k2

0.015

0.014

References

deltaE_cmc

skimage.color.deltaE_cmc(lab1, lab2, kL=1, kC=1, *, channel_axis=-1)[source]

Color difference from the CMC l:c standard.

This color difference was developed by the Colour Measurement Committee (CMC) of the Society of Dyers and Colourists (United Kingdom). It is intended for use in the textile industry.

The scale factors kL, kC set the weight given to differences in lightness and chroma relative to differences in hue. The usual values are kL=2, kC=1 for “acceptability” and kL=1, kC=1 for “imperceptibility”. Colors with dE > 1 are “different” for the given scale factors.

Parameters:
lab1array_like

reference color (Lab colorspace)

lab2array_like

comparison color (Lab colorspace)

channel_axisint, optional

This parameter indicates which axis of the arrays corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
dEarray_like

distance between colors lab1 and lab2

Notes

deltaE_cmc the defines the scales for the lightness, hue, and chroma in terms of the first color. Consequently deltaE_cmc(lab1, lab2) != deltaE_cmc(lab2, lab1)

References

[3]

F. J. J. Clarke, R. McDonald, and B. Rigg, “Modification to the JPC79 colour-difference formula,” J. Soc. Dyers Colour. 100, 128-132 (1984).

gray2rgb

skimage.color.gray2rgb(image, *, channel_axis=-1)[source]

Create an RGB representation of a gray-level image.

Parameters:
imagearray_like

Input image.

channel_axisint, optional

This parameter indicates which axis of the output array will correspond to channels.

Returns:
rgb(…, 3, …) ndarray

RGB image. A new dimension of length 3 is added to input image.

Notes

If the input is a 1-dimensional image of shape (M, ), the output will be shape (M, 3).

Examples using skimage.color.gray2rgb

Tinting gray-scale images

Tinting gray-scale images

Tinting gray-scale images
Circular and Elliptical Hough Transforms

Circular and Elliptical Hough Transforms

Circular and Elliptical Hough Transforms
Region Boundary based RAGs

Region Boundary based RAGs

Region Boundary based RAGs

gray2rgba

skimage.color.gray2rgba(image, alpha=None, *, channel_axis=-1)[source]

Create a RGBA representation of a gray-level image.

Parameters:
imagearray_like

Input image.

alphaarray_like, optional

Alpha channel of the output image. It may be a scalar or an array that can be broadcast to image. If not specified it is set to the maximum limit corresponding to the image dtype.

channel_axisint, optional

This parameter indicates which axis of the output array will correspond to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
rgbandarray

RGBA image. A new dimension of length 4 is added to input image shape.

hed2rgb

skimage.color.hed2rgb(hed, *, channel_axis=-1)[source]

Haematoxylin-Eosin-DAB (HED) to RGB color space conversion.

Parameters:
hed(…, 3, …) array_like

The image in the HED color space. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB. Same dimensions as input.

Raises:
ValueError

If hed is not at least 2-D with shape (…, 3, …).

References

[1]

A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution.,” Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001.

Examples

>>> from skimage import data
>>> from skimage.color import rgb2hed, hed2rgb
>>> ihc = data.immunohistochemistry()
>>> ihc_hed = rgb2hed(ihc)
>>> ihc_rgb = hed2rgb(ihc_hed)

Examples using skimage.color.hed2rgb

Separate colors in immunohistochemical staining

Separate colors in immunohistochemical staining

Separate colors in immunohistochemical staining

hsv2rgb

skimage.color.hsv2rgb(hsv, *, channel_axis=-1)[source]

HSV to RGB color space conversion.

Parameters:
hsv(…, 3, …) array_like

The image in HSV format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If hsv is not at least 2-D with shape (…, 3, …).

Notes

Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1].

References

Examples

>>> from skimage import data
>>> img = data.astronaut()
>>> img_hsv = rgb2hsv(img)
>>> img_rgb = hsv2rgb(img_hsv)

Examples using skimage.color.hsv2rgb

Tinting gray-scale images

Tinting gray-scale images

Tinting gray-scale images
Flood Fill

Flood Fill

Flood Fill

lab2lch

skimage.color.lab2lch(lab, *, channel_axis=-1)[source]

Convert image in CIE-LAB to CIE-LCh color space.

CIE-LCh is the cylindrical representation of the CIE-LAB (Cartesian) color space.

Parameters:
lab(…, 3, …) array_like

The input image in CIE-LAB color space. Unless channel_axis is set, the final dimension denotes the CIE-LAB channels. The L* values range from 0 to 100; the a* and b* values range from -128 to 127.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in CIE-LCh color space, of same shape as input.

Raises:
ValueError

If lab does not have at least 3 channels (i.e., L*, a*, and b*).

See also

lch2lab

Notes

The h channel (i.e., hue) is expressed as an angle in range (0, 2*pi).

References

Examples

>>> from skimage import data
>>> from skimage.color import rgb2lab, lab2lch
>>> img = data.astronaut()
>>> img_lab = rgb2lab(img)
>>> img_lch = lab2lch(img_lab)

lab2rgb

skimage.color.lab2rgb(lab, illuminant='D65', observer='2', *, channel_axis=-1)[source]

Convert image in CIE-LAB to sRGB color space.

Parameters:
lab(…, 3, …) array_like

The input image in CIE-LAB color space. Unless channel_axis is set, the final dimension denotes the CIE-LAB channels. The L* values range from 0 to 100; the a* and b* values range from -128 to 127.

illuminant{“A”, “B”, “C”, “D50”, “D55”, “D65”, “D75”, “E”}, optional

The name of the illuminant (the function is NOT case sensitive).

observer{“2”, “10”, “R”}, optional

The aperture angle of the observer.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in sRGB color space, of same shape as input.

Raises:
ValueError

If lab is not at least 2-D with shape (…, 3, …).

See also

rgb2lab

Notes

This function uses lab2xyz() and xyz2rgb(). The CIE XYZ tristimulus values are x_ref = 95.047, y_ref = 100., and z_ref = 108.883. See function get_xyz_coords() for a list of supported illuminants.

References

lab2xyz

skimage.color.lab2xyz(lab, illuminant='D65', observer='2', *, channel_axis=-1)[source]

Convert image in CIE-LAB to XYZ color space.

Parameters:
lab(…, 3, …) array_like

The input image in CIE-LAB color space. Unless channel_axis is set, the final dimension denotes the CIE-LAB channels. The L* values range from 0 to 100; the a* and b* values range from -128 to 127.

illuminant{“A”, “B”, “C”, “D50”, “D55”, “D65”, “D75”, “E”}, optional

The name of the illuminant (the function is NOT case sensitive).

observer{“2”, “10”, “R”}, optional

The aperture angle of the observer.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in XYZ color space, of same shape as input.

Raises:
ValueError

If lab is not at least 2-D with shape (…, 3, …).

ValueError

If either the illuminant or the observer angle are not supported or unknown.

UserWarning

If any of the pixels are invalid (Z < 0).

See also

xyz2lab

Notes

The CIE XYZ tristimulus values are x_ref = 95.047, y_ref = 100., and z_ref = 108.883. See function get_xyz_coords() for a list of supported illuminants.

References

label2rgb

skimage.color.label2rgb(label, image=None, colors=None, alpha=0.3, bg_label=0, bg_color=(0, 0, 0), image_alpha=1, kind='overlay', *, saturation=0, channel_axis=-1)[source]

Return an RGB image where color-coded labels are painted over the image.

Parameters:
labelndarray

Integer array of labels with the same shape as image.

imagendarray, optional

Image used as underlay for labels. It should have the same shape as labels, optionally with an additional RGB (channels) axis. If image is an RGB image, it is converted to grayscale before coloring.

colorslist, optional

List of colors. If the number of labels exceeds the number of colors, then the colors are cycled.

alphafloat [0, 1], optional

Opacity of colorized labels. Ignored if image is None.

bg_labelint, optional

Label that’s treated as the background. If bg_label is specified, bg_color is None, and kind is overlay, background is not painted by any colors.

bg_colorstr or array, optional

Background color. Must be a name in color_dict or RGB float values between [0, 1].

image_alphafloat [0, 1], optional

Opacity of the image.

kindstring, one of {‘overlay’, ‘avg’}

The kind of color image desired. ‘overlay’ cycles over defined colors and overlays the colored labels over the original image. ‘avg’ replaces each labeled segment with its average color, for a stained-class or pastel painting appearance.

saturationfloat [0, 1], optional

Parameter to control the saturation applied to the original image between fully saturated (original RGB, saturation=1) and fully unsaturated (grayscale, saturation=0). Only applies when kind=’overlay’.

channel_axisint, optional

This parameter indicates which axis of the output array will correspond to channels. If image is provided, this must also match the axis of image that corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
resultndarray of float, same shape as image

The result of blending a cycling colormap (colors) for each distinct value in label with the image, at a certain alpha value.

Examples using skimage.color.label2rgb

Local Binary Pattern for texture classification

Local Binary Pattern for texture classification

Local Binary Pattern for texture classification
RAG Thresholding

RAG Thresholding

RAG Thresholding
Normalized Cut

Normalized Cut

Normalized Cut
Find Regular Segments Using Compact Watershed

Find Regular Segments Using Compact Watershed

Find Regular Segments Using Compact Watershed
Expand segmentation labels without overlap

Expand segmentation labels without overlap

Expand segmentation labels without overlap
Label image regions

Label image regions

Label image regions
Find the intersection of two segmentations

Find the intersection of two segmentations

Find the intersection of two segmentations
RAG Merging

RAG Merging

RAG Merging
Hierarchical Merging of Region Boundary RAGs

Hierarchical Merging of Region Boundary RAGs

Hierarchical Merging of Region Boundary RAGs
Extrema

Extrema

Extrema
Use pixel graphs to find an object's geodesic center

Use pixel graphs to find an object’s geodesic center

Use pixel graphs to find an object's geodesic center
Comparing edge-based and region-based segmentation

Comparing edge-based and region-based segmentation

Comparing edge-based and region-based segmentation
Segment human cells (in mitosis)

Segment human cells (in mitosis)

Segment human cells (in mitosis)

lch2lab

skimage.color.lch2lab(lch, *, channel_axis=-1)[source]

Convert image in CIE-LCh to CIE-LAB color space.

CIE-LCh is the cylindrical representation of the CIE-LAB (Cartesian) color space.

Parameters:
lch(…, 3, …) array_like

The input image in CIE-LCh color space. Unless channel_axis is set, the final dimension denotes the CIE-LAB channels. The L* values range from 0 to 100; the C values range from 0 to 100; the h values range from 0 to 2*pi.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in CIE-LAB format, of same shape as input.

Raises:
ValueError

If lch does not have at least 3 channels (i.e., L*, C, and h).

See also

lab2lch

Notes

The h channel (i.e., hue) is expressed as an angle in range (0, 2*pi).

References

Examples

>>> from skimage import data
>>> from skimage.color import rgb2lab, lch2lab, lab2lch
>>> img = data.astronaut()
>>> img_lab = rgb2lab(img)
>>> img_lch = lab2lch(img_lab)
>>> img_lab2 = lch2lab(img_lch)

rgb2gray

skimage.color.rgb2gray(rgb, *, channel_axis=-1)[source]

Compute luminance of an RGB image.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

Returns:
outndarray

The luminance image - an array which is the same size as the input array, but with the channel dimension removed.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

The weights used in this conversion are calibrated for contemporary CRT phosphors:

Y = 0.2125 R + 0.7154 G + 0.0721 B

If there is an alpha channel present, it is ignored.

References

Examples

>>> from skimage.color import rgb2gray
>>> from skimage import data
>>> img = data.astronaut()
>>> img_gray = rgb2gray(img)

Examples using skimage.color.rgb2gray

Block views on images/arrays

Block views on images/arrays

Block views on images/arrays
RGB to grayscale

RGB to grayscale

RGB to grayscale
Adapting gray-scale filters to RGB images

Adapting gray-scale filters to RGB images

Adapting gray-scale filters to RGB images
Ridge operators

Ridge operators

Ridge operators
Active Contour Model

Active Contour Model

Active Contour Model
Circular and Elliptical Hough Transforms

Circular and Elliptical Hough Transforms

Circular and Elliptical Hough Transforms
Rescale, resize, and downscale

Rescale, resize, and downscale

Rescale, resize, and downscale
Fundamental matrix estimation

Fundamental matrix estimation

Fundamental matrix estimation
Robust matching using RANSAC

Robust matching using RANSAC

Robust matching using RANSAC
Registration using optical flow

Registration using optical flow

Registration using optical flow
Using Polar and Log-Polar Transformations for Registration

Using Polar and Log-Polar Transformations for Registration

Using Polar and Log-Polar Transformations for Registration
Removing small objects in grayscale images with a top hat filter

Removing small objects in grayscale images with a top hat filter

Removing small objects in grayscale images with a top hat filter
Image Deconvolution

Image Deconvolution

Image Deconvolution
Using window functions with images

Using window functions with images

Using window functions with images
Image Deconvolution

Image Deconvolution

Image Deconvolution
Estimate strength of blur

Estimate strength of blur

Estimate strength of blur
Phase Unwrapping

Phase Unwrapping

Phase Unwrapping
Full tutorial on calibrating Denoisers Using J-Invariance

Full tutorial on calibrating Denoisers Using J-Invariance

Full tutorial on calibrating Denoisers Using J-Invariance
CENSURE feature detector

CENSURE feature detector

CENSURE feature detector
Blob Detection

Blob Detection

Blob Detection
ORB feature detector and binary descriptor

ORB feature detector and binary descriptor

ORB feature detector and binary descriptor
Gabors / Primary Visual Cortex "Simple Cells" from an Image

Gabors / Primary Visual Cortex “Simple Cells” from an Image

Gabors / Primary Visual Cortex "Simple Cells" from an Image
BRIEF binary descriptor

BRIEF binary descriptor

BRIEF binary descriptor
SIFT feature detector and descriptor extractor

SIFT feature detector and descriptor extractor

SIFT feature detector and descriptor extractor
Region Boundary based RAGs

Region Boundary based RAGs

Region Boundary based RAGs
Apply maskSLIC vs SLIC

Apply maskSLIC vs SLIC

Apply maskSLIC vs SLIC
Comparison of segmentation and superpixel algorithms

Comparison of segmentation and superpixel algorithms

Comparison of segmentation and superpixel algorithms
Hierarchical Merging of Region Boundary RAGs

Hierarchical Merging of Region Boundary RAGs

Hierarchical Merging of Region Boundary RAGs
Extrema

Extrema

Extrema
Use pixel graphs to find an object's geodesic center

Use pixel graphs to find an object’s geodesic center

Use pixel graphs to find an object's geodesic center

rgb2hed

skimage.color.rgb2hed(rgb, *, channel_axis=-1)[source]

RGB to Haematoxylin-Eosin-DAB (HED) color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in HED format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

References

[1]

A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution.,” Analytical and quantitative cytology and histology / the International Academy of Cytology [and] American Society of Cytology, vol. 23, no. 4, pp. 291-9, Aug. 2001.

Examples

>>> from skimage import data
>>> from skimage.color import rgb2hed
>>> ihc = data.immunohistochemistry()
>>> ihc_hed = rgb2hed(ihc)

Examples using skimage.color.rgb2hed

Separate colors in immunohistochemical staining

Separate colors in immunohistochemical staining

Separate colors in immunohistochemical staining

rgb2hsv

skimage.color.rgb2hsv(rgb, *, channel_axis=-1)[source]

RGB to HSV color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in HSV format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

Conversion between RGB and HSV color spaces results in some loss of precision, due to integer arithmetic and rounding [1].

References

Examples

>>> from skimage import color
>>> from skimage import data
>>> img = data.astronaut()
>>> img_hsv = color.rgb2hsv(img)

Examples using skimage.color.rgb2hsv

RGB to HSV

RGB to HSV

RGB to HSV
Tinting gray-scale images

Tinting gray-scale images

Tinting gray-scale images
Flood Fill

Flood Fill

Flood Fill

rgb2lab

skimage.color.rgb2lab(rgb, illuminant='D65', observer='2', *, channel_axis=-1)[source]

Conversion from the sRGB color space (IEC 61966-2-1:1999) to the CIE Lab colorspace under the given illuminant and observer.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

illuminant{“A”, “B”, “C”, “D50”, “D55”, “D65”, “D75”, “E”}, optional

The name of the illuminant (the function is NOT case sensitive).

observer{“2”, “10”, “R”}, optional

The aperture angle of the observer.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in Lab format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

RGB is a device-dependent color space so, if you use this function, be sure that the image you are analyzing has been mapped to the sRGB color space.

This function uses rgb2xyz and xyz2lab. By default Observer=”2”, Illuminant=”D65”. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function get_xyz_coords for a list of supported illuminants.

References

rgb2rgbcie

skimage.color.rgb2rgbcie(rgb, *, channel_axis=-1)[source]

RGB to RGB CIE color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB CIE format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

References

Examples

>>> from skimage import data
>>> from skimage.color import rgb2rgbcie
>>> img = data.astronaut()
>>> img_rgbcie = rgb2rgbcie(img)

rgb2xyz

skimage.color.rgb2xyz(rgb, *, channel_axis=-1)[source]

RGB to XYZ color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in XYZ format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts from sRGB.

References

Examples

>>> from skimage import data
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)

rgb2ycbcr

skimage.color.rgb2ycbcr(rgb, *, channel_axis=-1)[source]

RGB to YCbCr color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in YCbCr format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

Y is between 16 and 235. This is the color space commonly used by video codecs; it is sometimes incorrectly called “YUV”.

References

rgb2ydbdr

skimage.color.rgb2ydbdr(rgb, *, channel_axis=-1)[source]

RGB to YDbDr color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in YDbDr format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

This is the color space commonly used by video codecs. It is also the reversible color transform in JPEG2000.

References

rgb2yiq

skimage.color.rgb2yiq(rgb, *, channel_axis=-1)[source]

RGB to YIQ color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in YIQ format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

rgb2ypbpr

skimage.color.rgb2ypbpr(rgb, *, channel_axis=-1)[source]

RGB to YPbPr color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in YPbPr format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

References

rgb2yuv

skimage.color.rgb2yuv(rgb, *, channel_axis=-1)[source]

RGB to YUV color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in YUV format. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

Y is between 0 and 1. Use YCbCr instead of YUV for the color space commonly used by video codecs, where Y ranges from 16 to 235.

References

rgba2rgb

skimage.color.rgba2rgb(rgba, background=(1, 1, 1), *, channel_axis=-1)[source]

RGBA to RGB conversion using alpha blending [1].

Parameters:
rgba(…, 4, …) array_like

The image in RGBA format. By default, the final dimension denotes channels.

backgroundarray_like

The color of the background to blend the image with (3 floats between 0 to 1 - the RGB value of the background).

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If rgba is not at least 2D with shape (…, 4, …).

References

Examples

>>> from skimage import color
>>> from skimage import data
>>> img_rgba = data.logo()
>>> img_rgb = color.rgba2rgb(img_rgba)

rgbcie2rgb

skimage.color.rgbcie2rgb(rgbcie, *, channel_axis=-1)[source]

RGB CIE to RGB color space conversion.

Parameters:
rgbcie(…, 3, …) array_like

The image in RGB CIE format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If rgbcie is not at least 2-D with shape (…, 3, …).

References

Examples

>>> from skimage import data
>>> from skimage.color import rgb2rgbcie, rgbcie2rgb
>>> img = data.astronaut()
>>> img_rgbcie = rgb2rgbcie(img)
>>> img_rgb = rgbcie2rgb(img_rgbcie)

separate_stains

skimage.color.separate_stains(rgb, conv_matrix, *, channel_axis=-1)[source]

RGB to stain color space conversion.

Parameters:
rgb(…, 3, …) array_like

The image in RGB format. By default, the final dimension denotes channels.

conv_matrix: ndarray

The stain separation matrix as described by G. Landini [1].

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in stain color space. Same dimensions as input.

Raises:
ValueError

If rgb is not at least 2-D with shape (…, 3, …).

Notes

Stain separation matrices available in the color module and their respective colorspace:

  • hed_from_rgb: Hematoxylin + Eosin + DAB

  • hdx_from_rgb: Hematoxylin + DAB

  • fgx_from_rgb: Feulgen + Light Green

  • bex_from_rgb: Giemsa stain : Methyl Blue + Eosin

  • rbd_from_rgb: FastRed + FastBlue + DAB

  • gdx_from_rgb: Methyl Green + DAB

  • hax_from_rgb: Hematoxylin + AEC

  • bro_from_rgb: Blue matrix Anilline Blue + Red matrix Azocarmine + Orange matrix Orange-G

  • bpx_from_rgb: Methyl Blue + Ponceau Fuchsin

  • ahx_from_rgb: Alcian Blue + Hematoxylin

  • hpx_from_rgb: Hematoxylin + PAS

This implementation borrows some ideas from DIPlib [2], e.g. the compensation using a small value to avoid log artifacts when calculating the Beer-Lambert law.

References

[3]

A. C. Ruifrok and D. A. Johnston, “Quantification of histochemical staining by color deconvolution,” Anal. Quant. Cytol. Histol., vol. 23, no. 4, pp. 291–299, Aug. 2001.

Examples

>>> from skimage import data
>>> from skimage.color import separate_stains, hdx_from_rgb
>>> ihc = data.immunohistochemistry()
>>> ihc_hdx = separate_stains(ihc, hdx_from_rgb)

xyz2lab

skimage.color.xyz2lab(xyz, illuminant='D65', observer='2', *, channel_axis=-1)[source]

XYZ to CIE-LAB color space conversion.

Parameters:
xyz(…, 3, …) array_like

The image in XYZ format. By default, the final dimension denotes channels.

illuminant{“A”, “B”, “C”, “D50”, “D55”, “D65”, “D75”, “E”}, optional

The name of the illuminant (the function is NOT case sensitive).

observer{“2”, “10”, “R”}, optional

One of: 2-degree observer, 10-degree observer, or ‘R’ observer as in R function grDevices::convertColor.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in CIE-LAB format. Same dimensions as input.

Raises:
ValueError

If xyz is not at least 2-D with shape (…, 3, …).

ValueError

If either the illuminant or the observer angle is unsupported or unknown.

Notes

By default Observer=”2”, Illuminant=”D65”. CIE XYZ tristimulus values x_ref=95.047, y_ref=100., z_ref=108.883. See function get_xyz_coords for a list of supported illuminants.

References

Examples

>>> from skimage import data
>>> from skimage.color import rgb2xyz, xyz2lab
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)
>>> img_lab = xyz2lab(img_xyz)

xyz2rgb

skimage.color.xyz2rgb(xyz, *, channel_axis=-1)[source]

XYZ to RGB color space conversion.

Parameters:
xyz(…, 3, …) array_like

The image in XYZ format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If xyz is not at least 2-D with shape (…, 3, …).

Notes

The CIE XYZ color space is derived from the CIE RGB color space. Note however that this function converts to sRGB.

References

Examples

>>> from skimage import data
>>> from skimage.color import rgb2xyz, xyz2rgb
>>> img = data.astronaut()
>>> img_xyz = rgb2xyz(img)
>>> img_rgb = xyz2rgb(img_xyz)

ycbcr2rgb

skimage.color.ycbcr2rgb(ycbcr, *, channel_axis=-1)[source]

YCbCr to RGB color space conversion.

Parameters:
ycbcr(…, 3, …) array_like

The image in YCbCr format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If ycbcr is not at least 2-D with shape (…, 3, …).

Notes

Y is between 16 and 235. This is the color space commonly used by video codecs; it is sometimes incorrectly called “YUV”.

References

ydbdr2rgb

skimage.color.ydbdr2rgb(ydbdr, *, channel_axis=-1)[source]

YDbDr to RGB color space conversion.

Parameters:
ydbdr(…, 3, …) array_like

The image in YDbDr format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If ydbdr is not at least 2-D with shape (…, 3, …).

Notes

This is the color space commonly used by video codecs, also called the reversible color transform in JPEG2000.

References

yiq2rgb

skimage.color.yiq2rgb(yiq, *, channel_axis=-1)[source]

YIQ to RGB color space conversion.

Parameters:
yiq(…, 3, …) array_like

The image in YIQ format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If yiq is not at least 2-D with shape (…, 3, …).

ypbpr2rgb

skimage.color.ypbpr2rgb(ypbpr, *, channel_axis=-1)[source]

YPbPr to RGB color space conversion.

Parameters:
ypbpr(…, 3, …) array_like

The image in YPbPr format. By default, the final dimension denotes channels.

channel_axisint, optional

This parameter indicates which axis of the array corresponds to channels.

New in version 0.19: channel_axis was added in 0.19.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If ypbpr is not at least 2-D with shape (…, 3, …).

References

yuv2rgb

skimage.color.yuv2rgb(yuv, *, channel_axis=-1)[source]

YUV to RGB color space conversion.

Parameters:
yuv(…, 3, …) array_like

The image in YUV format. By default, the final dimension denotes channels.

Returns:
out(…, 3, …) ndarray

The image in RGB format. Same dimensions as input.

Raises:
ValueError

If yuv is not at least 2-D with shape (…, 3, …).

References