.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/color_exposure/plot_adapt_hist_eq_3d.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_color_exposure_plot_adapt_hist_eq_3d.py: ================================== 3D adaptive histogram equalization ================================== Adaptive histogram equalization (AHE) can be used to improve the local contrast of an image [1]_. Specifically, AHE can be useful for normalizing intensities across images. This example compares the results of applying global histogram equalization and AHE to a 3D image and a synthetically degraded version of it. .. [1] https://en.wikipedia.org/wiki/Histogram_equalization .. GENERATED FROM PYTHON SOURCE LINES 14-283 .. image-sg:: /auto_examples/color_exposure/images/sphx_glr_plot_adapt_hist_eq_3d_001.png :alt: plot adapt hist eq 3d :srcset: /auto_examples/color_exposure/images/sphx_glr_plot_adapt_hist_eq_3d_001.png :class: sphx-glr-single-img .. code-block:: Python import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib import cm, colors from mpl_toolkits.mplot3d import Axes3D import numpy as np from skimage import exposure, util # Prepare data and apply histogram equalization from skimage.data import cells3d im_orig = util.img_as_float(cells3d()[:, 1, :, :]) # grab just the nuclei # Reorder axis order from (z, y, x) to (x, y, z) im_orig = im_orig.transpose() # Rescale image data to range [0, 1] im_orig = np.clip(im_orig, np.percentile(im_orig, 5), np.percentile(im_orig, 95)) im_orig = (im_orig - im_orig.min()) / (im_orig.max() - im_orig.min()) # Degrade image by applying exponential intensity decay along x sigmoid = np.exp(-3 * np.linspace(0, 1, im_orig.shape[0])) im_degraded = (im_orig.T * sigmoid).T # Set parameters for AHE # Determine kernel sizes in each dim relative to image shape kernel_size = (im_orig.shape[0] // 5, im_orig.shape[1] // 5, im_orig.shape[2] // 2) kernel_size = np.array(kernel_size) clip_limit = 0.9 # Perform histogram equalization im_orig_he, im_degraded_he = ( exposure.equalize_hist(im) for im in [im_orig, im_degraded] ) im_orig_ahe, im_degraded_ahe = ( exposure.equalize_adapthist(im, kernel_size=kernel_size, clip_limit=clip_limit) for im in [im_orig, im_degraded] ) # Define functions to help plot the data def scalars_to_rgba(scalars, cmap, vmin=0.0, vmax=1.0, alpha=0.2): """ Convert array of scalars into array of corresponding RGBA values. """ norm = colors.Normalize(vmin=vmin, vmax=vmax) scalar_map = cm.ScalarMappable(norm=norm, cmap=cmap) rgbas = scalar_map.to_rgba(scalars) rgbas[:, 3] = alpha return rgbas def plt_render_volume(vol, fig_ax, cmap, vmin=0, vmax=1, bin_widths=None, n_levels=20): """ Render a volume in a 3D matplotlib scatter plot. Better would be to use napari. """ vol = np.clip(vol, vmin, vmax) xs, ys, zs = np.mgrid[ 0 : vol.shape[0] : bin_widths[0], 0 : vol.shape[1] : bin_widths[1], 0 : vol.shape[2] : bin_widths[2], ] vol_scaled = vol[:: bin_widths[0], :: bin_widths[1], :: bin_widths[2]].flatten() # Define alpha transfer function levels = np.linspace(vmin, vmax, n_levels) alphas = np.linspace(0, 0.7, n_levels) alphas = alphas**11 alphas = (alphas - alphas.min()) / (alphas.max() - alphas.min()) alphas *= 0.8 # Group pixels by intensity and plot separately, # as 3D scatter does not accept arrays of alpha values for il in range(1, len(levels)): sel = vol_scaled >= levels[il - 1] sel *= vol_scaled <= levels[il] if not np.max(sel): continue c = scalars_to_rgba( vol_scaled[sel], cmap, vmin=vmin, vmax=vmax, alpha=alphas[il - 1] ) fig_ax.scatter( xs.flatten()[sel], ys.flatten()[sel], zs.flatten()[sel], c=c, s=0.5 * np.mean(bin_widths), marker='o', linewidth=0, ) # Create figure with subplots cmap = 'Blues' fig = plt.figure(figsize=(10, 6)) axs = [ fig.add_subplot(2, 3, i + 1, projection=Axes3D.name, facecolor="none") for i in range(6) ] ims = [im_orig, im_orig_he, im_orig_ahe, im_degraded, im_degraded_he, im_degraded_ahe] # Prepare lines for the various boxes to be plotted verts = np.array([[i, j, k] for i in [0, 1] for j in [0, 1] for k in [0, 1]]).astype( np.float32 ) lines = [ np.array([i, j]) for i in verts for j in verts if np.allclose(np.linalg.norm(i - j), 1) ] # "render" volumetric data for iax, ax in enumerate(axs[:]): plt_render_volume(ims[iax], ax, cmap, 0, 1, [2, 2, 2], 20) # plot 3D box rect_shape = np.array(im_orig.shape) + 2 for line in lines: ax.plot( (line * rect_shape)[:, 0] - 1, (line * rect_shape)[:, 1] - 1, (line * rect_shape)[:, 2] - 1, linewidth=1, color='gray', ) # Add boxes illustrating the kernels ns = np.array(im_orig.shape) // kernel_size - 1 for axis_ind, vertex_ind, box_shape in zip( [1] + [2] * 4, [ [0, 0, 0], [ns[0] - 1, ns[1], ns[2] - 1], [ns[0], ns[1] - 1, ns[2] - 1], [ns[0], ns[1], ns[2] - 1], [ns[0], ns[1], ns[2]], ], [np.array(im_orig.shape)] + [kernel_size] * 4, ): for line in lines: axs[axis_ind].plot( ((line + vertex_ind) * box_shape)[:, 0], ((line + vertex_ind) * box_shape)[:, 1], ((line + vertex_ind) * box_shape)[:, 2], linewidth=1.2, color='crimson', ) # Plot degradation function axs[3].scatter( xs=np.arange(len(sigmoid)), ys=np.zeros(len(sigmoid)) + im_orig.shape[1], zs=sigmoid * im_orig.shape[2], s=5, c=scalars_to_rgba(sigmoid, cmap=cmap, vmin=0, vmax=1, alpha=1.0)[:, :3], ) # Subplot aesthetics for iax, ax in enumerate(axs[:]): # Get rid of panes and axis lines for dim_ax in [ax.xaxis, ax.yaxis, ax.zaxis]: dim_ax.set_pane_color((1.0, 1.0, 1.0, 0.0)) dim_ax.line.set_color((1.0, 1.0, 1.0, 0.0)) # Define 3D axes limits, see https://github.com/ # matplotlib/matplotlib/issues/17172#issuecomment-617546105 xyzlim = np.array([ax.get_xlim3d(), ax.get_ylim3d(), ax.get_zlim3d()]).T XYZlim = np.asarray([min(xyzlim[0]), max(xyzlim[1])]) ax.set_xlim3d(XYZlim) ax.set_ylim3d(XYZlim) ax.set_zlim3d(XYZlim * 0.5) try: ax.set_aspect('equal') except NotImplementedError: pass ax.set_xlabel('x', labelpad=-20) ax.set_ylabel('y', labelpad=-20) ax.text2D(0.63, 0.2, "z", transform=ax.transAxes) ax.set_xticks([]) ax.set_yticks([]) ax.set_zticks([]) ax.grid(False) ax.elev = 30 plt.subplots_adjust( left=0.05, bottom=-0.1, right=1.01, top=1.1, wspace=-0.1, hspace=-0.45 ) # Highlight AHE rect_ax = fig.add_axes([0, 0, 1, 1], facecolor='none') rect_ax.set_axis_off() rect = patches.Rectangle( (0.68, 0.01), 0.315, 0.98, edgecolor='gray', facecolor='none', linewidth=2, linestyle='--', ) rect_ax.add_patch(rect) # Add text rect_ax.text( 0.19, 0.34, '$I_{degr}(x,y,z) = e^{-x}I_{orig}(x,y,z)$', fontsize=9, rotation=-15, color=scalars_to_rgba([0.8], cmap='Blues', alpha=1.0)[0], ) fc = {'size': 14} rect_ax.text( 0.03, 0.58, r'$\it{Original}$' + '\ninput image', rotation=90, fontdict=fc, horizontalalignment='center', ) rect_ax.text( 0.03, 0.16, r'$\it{Degraded}$' + '\ninput image', rotation=90, fontdict=fc, horizontalalignment='center', ) rect_ax.text(0.13, 0.91, 'Input volume:\n3D cell image', fontdict=fc) rect_ax.text( 0.51, 0.91, r'$\it{Global}$' + '\nhistogram equalization', fontdict=fc, horizontalalignment='center', ) rect_ax.text( 0.84, 0.91, r'$\it{Adaptive}$' + '\nhistogram equalization (AHE)', fontdict=fc, horizontalalignment='center', ) rect_ax.text(0.58, 0.82, 'non-local', fontsize=12, color='crimson') rect_ax.text(0.87, 0.82, 'local kernel', fontsize=12, color='crimson') # Add colorbar cbar_ax = fig.add_axes([0.12, 0.43, 0.008, 0.08]) cbar_ax.imshow(np.arange(256).reshape(256, 1)[::-1], cmap=cmap, aspect="auto") cbar_ax.set_xticks([]) cbar_ax.set_yticks([0, 255]) cbar_ax.set_xticklabels([]) cbar_ax.set_yticklabels([1.0, 0.0]) plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 13.695 seconds) .. _sphx_glr_download_auto_examples_color_exposure_plot_adapt_hist_eq_3d.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/v0.24.0?filepath=notebooks/auto_examples/color_exposure/plot_adapt_hist_eq_3d.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_adapt_hist_eq_3d.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_adapt_hist_eq_3d.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_