Datasets with 3 or more spatial dimensionsΒΆ

Most scikit-image functions are compatible with 3D datasets, i.e., images with 3 spatial dimensions (to be distinguished from 2D multichannel images, which are also arrays with three axes). skimage.data.cells3d() returns a 3D fluorescence microscopy image of cells. The returned dataset is a 3D multichannel image with dimensions provided in (z, c, y, x) order. Channel 0 contains cell membranes, while channel 1 contains nuclei.

The example below shows how to explore this dataset. This 3D image can be used to test the various functions of scikit-image.

from skimage import data
import plotly
import plotly.express as px

img = data.cells3d()[20:]
fig = px.imshow(img, facet_col=1, animation_frame=0,
                binary_string=True, binary_format='jpg')
fig.layout.annotations[0]['text'] = 'Cell membranes'
fig.layout.annotations[1]['text'] = 'Nuclei'
plotly.io.show(fig)

Total running time of the script: ( 0 minutes 2.995 seconds)

Gallery generated by Sphinx-Gallery