.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "auto_examples/edges/plot_skeleton.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        :ref:`Go to the end <sphx_glr_download_auto_examples_edges_plot_skeleton.py>`
        to download the full example code. or to run this example in your browser via Binder

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_auto_examples_edges_plot_skeleton.py:


===========
Skeletonize
===========

Skeletonization reduces binary objects to 1 pixel wide representations. This
can be useful for feature extraction, and/or representing an object's topology.

``skeletonize`` works by making successive passes of the image. On each pass,
border pixels are identified and removed on the condition that they do not
break the connectivity of the corresponding object.

.. GENERATED FROM PYTHON SOURCE LINES 13-41

.. code-block:: Python


    from skimage.morphology import skeletonize
    from skimage import data
    import matplotlib.pyplot as plt
    from skimage.util import invert

    # Invert the horse image
    image = invert(data.horse())

    # perform skeletonization
    skeleton = skeletonize(image)

    # display results
    fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(8, 4), sharex=True, sharey=True)

    ax = axes.ravel()

    ax[0].imshow(image, cmap=plt.cm.gray)
    ax[0].axis('off')
    ax[0].set_title('original', fontsize=20)

    ax[1].imshow(skeleton, cmap=plt.cm.gray)
    ax[1].axis('off')
    ax[1].set_title('skeleton', fontsize=20)

    fig.tight_layout()
    plt.show()




.. image-sg:: /auto_examples/edges/images/sphx_glr_plot_skeleton_001.png
   :alt: original, skeleton
   :srcset: /auto_examples/edges/images/sphx_glr_plot_skeleton_001.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 42-73

**Zhang's method vs Lee's method**

``skeletonize`` [Zha84]_ works by making successive passes of
the image, removing pixels on object borders. This continues until no
more pixels can be removed.  The image is correlated with a
mask that assigns each pixel a number in the range [0...255]
corresponding to each possible pattern of its 8 neighboring
pixels. A look up table is then used to assign the pixels a
value of 0, 1, 2 or 3, which are selectively removed during
the iterations.

``skeletonize(..., method='lee')`` [Lee94]_ uses an octree data structure
to examine a 3x3x3 neighborhood of a pixel. The algorithm proceeds by
iteratively sweeping over the image, and removing pixels at each iteration
until the image stops changing. Each iteration consists of two steps: first,
a list of candidates for removal is assembled; then pixels from this list
are rechecked sequentially, to better preserve connectivity of the image.

Note that Lee's method [Lee94]_ is designed to be used on 3-D images, and
is selected automatically for those. For illustrative purposes, we apply
this algorithm to a 2-D image.

.. [Zha84] A fast parallel algorithm for thinning digital patterns,
           T. Y. Zhang and C. Y. Suen, Communications of the ACM,
           March 1984, Volume 27, Number 3.

.. [Lee94] T.-C. Lee, R.L. Kashyap and C.-N. Chu, Building skeleton models
           via 3-D medial surface/axis thinning algorithms.
           Computer Vision, Graphics, and Image Processing, 56(6):462-478,
           1994.


.. GENERATED FROM PYTHON SOURCE LINES 73-100

.. code-block:: Python


    import matplotlib.pyplot as plt
    from skimage.morphology import skeletonize

    blobs = data.binary_blobs(200, blob_size_fraction=0.2, volume_fraction=0.35, rng=1)

    skeleton = skeletonize(blobs)
    skeleton_lee = skeletonize(blobs, method='lee')

    fig, axes = plt.subplots(1, 3, figsize=(8, 4), sharex=True, sharey=True)
    ax = axes.ravel()

    ax[0].imshow(blobs, cmap=plt.cm.gray)
    ax[0].set_title('original')
    ax[0].axis('off')

    ax[1].imshow(skeleton, cmap=plt.cm.gray)
    ax[1].set_title('skeletonize')
    ax[1].axis('off')

    ax[2].imshow(skeleton_lee, cmap=plt.cm.gray)
    ax[2].set_title('skeletonize (Lee 94)')
    ax[2].axis('off')

    fig.tight_layout()
    plt.show()




.. image-sg:: /auto_examples/edges/images/sphx_glr_plot_skeleton_002.png
   :alt: original, skeletonize, skeletonize (Lee 94)
   :srcset: /auto_examples/edges/images/sphx_glr_plot_skeleton_002.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 101-116

**Medial axis skeletonization**

The medial axis of an object is the set of all points having more than one
closest point on the object's boundary. It is often called the *topological
skeleton*, because it is a 1-pixel wide skeleton of the object, with the same
connectivity as the original object.

Here, we use the medial axis transform to compute the width of the foreground
objects. As the function ``medial_axis`` returns the distance transform in
addition to the medial axis (with the keyword argument ``return_distance=True``),
it is possible to compute the distance to the background for all points of
the medial axis with this function. This gives an estimate of the local width
of the objects.

For a skeleton with fewer branches, ``skeletonize`` should be preferred.

.. GENERATED FROM PYTHON SOURCE LINES 116-156

.. code-block:: Python


    from skimage.morphology import medial_axis, skeletonize

    # Generate the data
    blobs = data.binary_blobs(200, blob_size_fraction=0.2, volume_fraction=0.35, rng=1)

    # Compute the medial axis (skeleton) and the distance transform
    skel, distance = medial_axis(blobs, return_distance=True)

    # Compare with other skeletonization algorithms
    skeleton = skeletonize(blobs)
    skeleton_lee = skeletonize(blobs, method='lee')

    # Distance to the background for pixels of the skeleton
    dist_on_skel = distance * skel

    fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True, sharey=True)
    ax = axes.ravel()

    ax[0].imshow(blobs, cmap=plt.cm.gray)
    ax[0].set_title('original')
    ax[0].axis('off')

    ax[1].imshow(dist_on_skel, cmap='magma')
    ax[1].contour(blobs, [0.5], colors='w')
    ax[1].set_title('medial_axis')
    ax[1].axis('off')

    ax[2].imshow(skeleton, cmap=plt.cm.gray)
    ax[2].set_title('skeletonize')
    ax[2].axis('off')

    ax[3].imshow(skeleton_lee, cmap=plt.cm.gray)
    ax[3].set_title("skeletonize (Lee 94)")
    ax[3].axis('off')

    fig.tight_layout()
    plt.show()





.. image-sg:: /auto_examples/edges/images/sphx_glr_plot_skeleton_003.png
   :alt: original, medial_axis, skeletonize, skeletonize (Lee 94)
   :srcset: /auto_examples/edges/images/sphx_glr_plot_skeleton_003.png
   :class: sphx-glr-single-img





.. GENERATED FROM PYTHON SOURCE LINES 157-168

**Morphological thinning**

Morphological thinning, implemented in the `thin` function, works on the
same principle as `skeletonize`: remove pixels from the borders at each
iteration until none can be removed without altering the connectivity. The
different rules of removal can speed up skeletonization and result in
different final skeletons.

The `thin` function also takes an optional `max_num_iter` keyword argument to
limit the number of thinning iterations, and thus produce a relatively
thicker skeleton.

.. GENERATED FROM PYTHON SOURCE LINES 168-196

.. code-block:: Python


    from skimage.morphology import skeletonize, thin

    skeleton = skeletonize(image)
    thinned = thin(image)
    thinned_partial = thin(image, max_num_iter=25)

    fig, axes = plt.subplots(2, 2, figsize=(8, 8), sharex=True, sharey=True)
    ax = axes.ravel()

    ax[0].imshow(image, cmap=plt.cm.gray)
    ax[0].set_title('original')
    ax[0].axis('off')

    ax[1].imshow(skeleton, cmap=plt.cm.gray)
    ax[1].set_title('skeleton')
    ax[1].axis('off')

    ax[2].imshow(thinned, cmap=plt.cm.gray)
    ax[2].set_title('thinned')
    ax[2].axis('off')

    ax[3].imshow(thinned_partial, cmap=plt.cm.gray)
    ax[3].set_title('partially thinned')
    ax[3].axis('off')

    fig.tight_layout()
    plt.show()



.. image-sg:: /auto_examples/edges/images/sphx_glr_plot_skeleton_004.png
   :alt: original, skeleton, thinned, partially thinned
   :srcset: /auto_examples/edges/images/sphx_glr_plot_skeleton_004.png
   :class: sphx-glr-single-img






.. rst-class:: sphx-glr-timing

   **Total running time of the script:** (0 minutes 1.337 seconds)


.. _sphx_glr_download_auto_examples_edges_plot_skeleton.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example

    .. container:: binder-badge

      .. image:: images/binder_badge_logo.svg
        :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/v0.25.2?filepath=notebooks/auto_examples/edges/plot_skeleton.ipynb
        :alt: Launch binder
        :width: 150 px

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: plot_skeleton.ipynb <plot_skeleton.ipynb>`

    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: plot_skeleton.py <plot_skeleton.py>`

    .. container:: sphx-glr-download sphx-glr-download-zip

      :download:`Download zipped: plot_skeleton.zip <plot_skeleton.zip>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_