Getting started --------------- ``scikit-image`` is an image processing Python package that works with :mod:`numpy` arrays. The package is imported as ``skimage``: :: >>> import skimage as ski Most functions of ``skimage`` are found within submodules: :: >>> camera = ski.data.camera() A list of submodules and functions is found on the `API reference `_ webpage. Within scikit-image, images are represented as NumPy arrays, for example 2-D arrays for grayscale 2-D images :: >>> type(camera) >>> # An image with 512 rows and 512 columns >>> camera.shape (512, 512) The :mod:`skimage.data` submodule provides a set of functions returning example images, that can be used to get started quickly on using scikit-image's functions: :: >>> coins = ski.data.coins() >>> threshold_value = ski.filters.threshold_otsu(coins) >>> threshold_value 107 Of course, it is also possible to load your own images as NumPy arrays from image files, using :func:`skimage.io.imread`: :: >>> import os >>> filename = os.path.join(ski.data_dir, 'moon.png') >>> moon = ski.io.imread(filename) Use `natsort `_ to load multiple images :: >>> import os >>> from natsort import natsorted, ns >>> list_files = os.listdir('.') >>> list_files ['01.png', '010.png', '0101.png', '0190.png', '02.png'] >>> list_files = natsorted(list_files) >>> list_files ['01.png', '02.png', '010.png', '0101.png', '0190.png'] >>> image_list = [] >>> for filename in list_files: ... image_list.append(ski.io.imread(filename))