.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/segmentation/plot_niblack_sauvola.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_segmentation_plot_niblack_sauvola.py: ================================ Niblack and Sauvola Thresholding ================================ Niblack and Sauvola thresholds are local thresholding techniques that are useful for images where the background is not uniform, especially for text recognition [1]_, [2]_. Instead of calculating a single global threshold for the entire image, several thresholds are calculated for every pixel by using specific formulae that take into account the mean and standard deviation of the local neighborhood (defined by a window centered around the pixel). Here, we binarize an image using these algorithms compare it to a common global thresholding technique. Parameter `window_size` determines the size of the window that contains the surrounding pixels. .. [1] Niblack, W (1986), An introduction to Digital Image Processing, Prentice-Hall. .. [2] J. Sauvola and M. Pietikainen, "Adaptive document image binarization," Pattern Recognition 33(2), pp. 225-236, 2000. :DOI:`10.1016/S0031-3203(99)00055-2` .. GENERATED FROM PYTHON SOURCE LINES 24-67 .. image-sg:: /auto_examples/segmentation/images/sphx_glr_plot_niblack_sauvola_001.png :alt: Original, Global Threshold, Niblack Threshold, Sauvola Threshold :srcset: /auto_examples/segmentation/images/sphx_glr_plot_niblack_sauvola_001.png :class: sphx-glr-single-img .. code-block:: default import matplotlib import matplotlib.pyplot as plt from skimage.data import page from skimage.filters import (threshold_otsu, threshold_niblack, threshold_sauvola) matplotlib.rcParams['font.size'] = 9 image = page() binary_global = image > threshold_otsu(image) window_size = 25 thresh_niblack = threshold_niblack(image, window_size=window_size, k=0.8) thresh_sauvola = threshold_sauvola(image, window_size=window_size) binary_niblack = image > thresh_niblack binary_sauvola = image > thresh_sauvola plt.figure(figsize=(8, 7)) plt.subplot(2, 2, 1) plt.imshow(image, cmap=plt.cm.gray) plt.title('Original') plt.axis('off') plt.subplot(2, 2, 2) plt.title('Global Threshold') plt.imshow(binary_global, cmap=plt.cm.gray) plt.axis('off') plt.subplot(2, 2, 3) plt.imshow(binary_niblack, cmap=plt.cm.gray) plt.title('Niblack Threshold') plt.axis('off') plt.subplot(2, 2, 4) plt.imshow(binary_sauvola, cmap=plt.cm.gray) plt.title('Sauvola Threshold') plt.axis('off') plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.353 seconds) .. _sphx_glr_download_auto_examples_segmentation_plot_niblack_sauvola.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/v0.22.x?filepath=notebooks/auto_examples/segmentation/plot_niblack_sauvola.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_niblack_sauvola.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_niblack_sauvola.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_