.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/segmentation/plot_compact_watershed.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_segmentation_plot_compact_watershed.py: ============================================= Find Regular Segments Using Compact Watershed ============================================= The watershed transform is commonly used as a starting point for many segmentation algorithms. However, without a judicious choice of seeds, it can produce very uneven fragment sizes, which can be difficult to deal with in downstream analyses. The *compact* watershed transform remedies this by favoring seeds that are close to the pixel being considered. Both algorithms are implemented in the :py:func:`skimage.morphology.watershed` function. To use the compact form, simply pass a ``compactness`` value greater than 0. .. GENERATED FROM PYTHON SOURCE LINES 18-44 .. image-sg:: /auto_examples/segmentation/images/sphx_glr_plot_compact_watershed_001.png :alt: Classical watershed, Compact watershed :srcset: /auto_examples/segmentation/images/sphx_glr_plot_compact_watershed_001.png :class: sphx-glr-single-img .. code-block:: default import numpy as np from skimage import data, util, filters, color from skimage.segmentation import watershed import matplotlib.pyplot as plt coins = data.coins() edges = filters.sobel(coins) grid = util.regular_grid(coins.shape, n_points=468) seeds = np.zeros(coins.shape, dtype=int) seeds[grid] = np.arange(seeds[grid].size).reshape(seeds[grid].shape) + 1 w0 = watershed(edges, seeds) w1 = watershed(edges, seeds, compactness=0.01) fig, (ax0, ax1) = plt.subplots(1, 2) ax0.imshow(color.label2rgb(w0, coins, bg_label=-1)) ax0.set_title('Classical watershed') ax1.imshow(color.label2rgb(w1, coins, bg_label=-1)) ax1.set_title('Compact watershed') plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.537 seconds) .. _sphx_glr_download_auto_examples_segmentation_plot_compact_watershed.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://mybinder.org/v2/gh/scikit-image/scikit-image/v0.22.x?filepath=notebooks/auto_examples/segmentation/plot_compact_watershed.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_compact_watershed.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_compact_watershed.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_